一、简洁美
数学中的概念许许多多,但每个概念都是以最精炼、最概括的语言给出的。如在《图的初步知识》教学中,可以先让学生去探究过两点的直线有多少条?然后再让学生用自己的语言来概括这个结论,最后教师再给出“两点确定一条直线”,短短的一句话,简练严谨,内涵丰富,充分让学生体会了数学定理的简洁之美;又如九年级上圆的定义“圆是到定点的距离等于定长的点的集合”,若无“集合”则形成了点,构不成圆,一字之差则情况相差万里,充分体现了数学概念的简洁美。
欧拉给出的公式:V-E+F=2堪称“简单美”的典范。世间的多面体有多少?没有人能说清楚。但它们的顶点数V、棱数E、面数F,都必须服从欧拉给出的公式,一个如此简单的公式,概括了无数种多面体的共同特性,能不令人惊叹不已?在数学中,像欧拉公式这样形式简洁、内容深刻、作用很大的定理还有许多。
二、和谐美
古希腊数学家毕达哥拉斯有一句至理名言:“凡是美的东西都具有共同的特性,这就是部分与部分、部分与整体之间的和谐性。”
三、对称美
毕达哥拉斯学派认为,一切空间图形中,最美的是球形;一切平面图形中,最美的是圆形。圆是中心对称图形――圆心是它的对称中心,圆也是轴对称图形――任何一条直径都是它的对称轴。
教学中要让学生去体会这样的对称思想,利用数学的对称性解决数学问题。在数学解题中,往往是通过数学审美而获得数学美的直觉,使解题经验与审美直觉相配合,激发数学思维中的关联因素,从而产生解题思路。
四、统一美
五、奇异美
奇异性就是新颖性、开拓性。在无理数未出现前,人们认为任何两条线段的长都是可公约的。但后来有人发现正方形的对角线和边是不可公约的。这种奇异的结果,导致数系的扩大,使人们从有理数的狭小的圈子跳出来,产生了知识的新飞跃,由此我们不难理解为什么数学上以奇为美。著名的雪花曲线是奇异美的典型代表。